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EXTENDED KUNG-TRAUB-TYPE METHOD FOR SOLVING EQUATIONS

IOANNIS K. ARGYROS1, SANTHOSH GEORGE2

Abstract. We are motivated by a Kung-Traub-type method for solving equations on the real
line. In particular, we extend this method for Banach space valued operators. The radius of
convergence is also obtained as well as error bounds on the distances involved and a uniqueness
result. Our convergence analysis avoids Taylor expansions and the computation of higher order
than one derivatives.
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1. Introduction

In this paper, we are motivated by the Kung-Traub-type method [16] defined for each n =
0, 1, 2, . . . by

zn = xn − f(xn)

f ′(xn)
,

xn+1 = xn − f(xn)

f ′(xn)
− f ′(xn)f(zn)

f [zn, xn]2
,

where f : Ω ⊂ R −→ R is a continuously differentiable operator, Ω is a nonempty, convex and
open set x0 ∈ Ω is an initial point. This method generates a sequence approximating a solution
x∗ of equation f(x) = 0.

The convergence of this method is shown using Taylor expansions and hypotheses on the
derivative of order at least three. However, there are simple numerical examples, where this
method cannot apply. Hence, the applicability of the method is limited. Let us consider an
example, let us define function F on X = [−1

2 ,
3
2 ] by

F (x) =

{
x3 lnx2 + x5 − x4, x ̸= 0
0, x = 0.

Choose x∗ = 1. We have that

F ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2, F ′(1) = 3,

F ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x,

F ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Then, obviously function F does not have bounded third derivative in X. We shall make this
paper useful in solving not only equations on the real line but also equations of the form

F (x) = 0, (1)

where F : Ω ⊆ B1 −→ B2 is a Fréchet-differentiable operator, B1,B2 are Banach spaces and Ω
is a nonempty open and convex set. The iterative method corresponding to the Kung-Traub
method in this setting is defined by
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zk = xk − F ′(xk)
−1F (xk),

xk+1 = xk − F ′(xk)
−1F (xk)− F [zk, xk]

−1F ′(xk)F [zk, xk]
−1F (zk), (2)

where F [., .] : Ω × Ω −→ L(B1,B2), the space of bounded linear operators from B1 into B2.
Clearly, if F = f and Ω = B1 = B2 = R, then method (2) reduces to Kung-Traub method.
Related methods can be found in [1-16].

In this paper, we present the local convergence analysis of method (2). We shall find the radius
of convergence, computable error bounds on the distances ∥xn − x∗∥ and we shall establish the
uniqueness of the solution x∗ inside a certain ball based on some Lipschitz constants. The
computation of radius of convergence is important in the study of iterative methods, since it
provides the degree of difficulty in determining initial points x0.

The rest of the paper is structured as follows. Section 2 contains the local convergence,
whereas in Section 3, the numerical examples appear.

2. Local convergence

Let φ0 : R+∪{0} −→ R be a continuous and nondecreasing function with φ0(0) = 0. Suppose
that equation

φ0(t) = 1 (3)

has at least one positive root. Denote by ρ0 the smallest such root. Let φ : [0, ρ0) −→ R be a
continuous and nondecreasing function with φ(0) = 0. Define functions ψ1 and µ1 on [0, ρ0) by

ψ1(t) =

1∫
0

φ((1− θ)t)dθ

1− φ0(t)

and
µ1(t) = ψ1(t)− 1.

We have that µ1(0) = −1 and µ1(t) −→ +∞ as t −→ ρ−0 . It then follows from the intermediate
value theorem that function µ1 has zeros in the interval (0, ρ0). Denote by ρ1 the smallest such
zero. Let φ1 : [0, ρ1)×[0, ρ1) −→ R be a continuous and nondecreasing function in both variables
such that φ1(0, 0) = 0. Define function φ̄1(t) := φ1(ψ1(t)t, t)− 1. Suppose that

φ1(ψ1(ρ1)ρ1, ρ1) < 1. (4)

Denote by ρ̄1 the smallest zero of function φ̄1 on [0, ρ1). Moreover, let φ2 : [0, ρ̄1) −→ R and
φ3 : [0, ρ̄1) −→ R be continuous and nondecreasing functions. Define functions ψ2 and µ2 on
[0, ρ̄1) by

ψ2(t) = (1 + φ2(t)φ3(ψ1(t)t))ψ1(t)

and
µ2(t) = ψ2(t)− 1.

We get that µ2(0) = −1 < 0 and µ2(t) −→ +∞ as t −→ ρ̄−1 . Denote by ρ the smallest zero of
function µ2 on the interval (0, ρ̄1). Then, we have that for each t ∈ [0, ρ)

0 ≤ ψ1(t) < 1, (5)

0 ≤ φ1(ψ1(t)t, t) < 1 (6)

and
0 ≤ φ2(t) < 1. (7)

Let U(u, τ), Ū(u, τ) stand for the open and closed balls in Ω, respectively with center u ∈ B1

and of radius τ > 0. The local convergence of method (2) is based on the conditions (C):

(c1) F : Ω ⊂ B1 −→ B2 is a continuously Fréchet-differentiable operator and there exists a
divided difference of order one F [., .] : Ω× Ω −→ L(B1,B2).
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(c2) (4) holds for ρ0 given in (1) and ρ1 satisfying µ1(ρ1) = 0.
(c3) There exist x∗ ∈ Ω and a continuous and nondecreasing function φ0 : R+ −→ R with

φ0(0) = 0 such that F (x∗) = 0 and for each x ∈ Ω, F ′(x∗)−1 ∈ L(B2,B1) and

∥F ′(x∗)−1(F ′(x)− F ′(x∗))∥ ≤ φ0(∥x− x∗∥).
Set Ω0 = Ω ∩ Ū(x∗, ρ0).

(c4) There exist continuous and nondecreasing functions φ : [0, ρ0) −→ R, φ1 : [0, ρ0)
2 −→ R

with φ(0) = φ(0, 0) = 0 such that for each x, y ∈ Ω0

∥F ′(x∗)−1(F ′(x)− F ′(y))∥ ≤ φ(∥x− y∥)
and

∥F ′(x∗)−1(F [x, y]− F ′(x∗))∥ ≤ φ1(∥x− x∗∥, ∥y − x∗∥).
(c5) There exist continuous and nondecreasing functions φ2 : [0, ρ̄1) −→ R, φ3 : [0, ρ̄1) −→ R

such that for each x ∈ Ω0

∥F ′(x∗)−1F ′(x)∥ ≤ φ2(∥x− x∗∥)
and

∥F ′(x∗)−1F [x, y]∥ ≤ φ3(∥x− x∗∥),
where ρ̄1 satisfies φ̄1(ρ̄1) = 0.

(c6) Ū(x0, ρ) ⊆ Ω, where ρ satisfies µ2(ρ) = 0.
(c7) There exists ρ̄ ≥ ρ such that

φ0(ρ̄) < 1. (8)

Next, we show the local convergence analysis of method (2) using the conditions (C) and the
preceding notation.

Theorem 2.1. Suppose that the conditions (C) hold. Then, sequence {xn} generated for x0 ∈
U(x∗, ρ) − {x∗} by method (2) is well defined in U(x∗, ρ), remains in U(x∗, ρ) for each n =
0, 1, 2, . . . and converges to x∗. Moreover, the following error estimates hold

∥zk − x∗∥ ≤ ψ1(∥xk − x∗∥)∥xk − x∗∥ ≤ ∥xk − x∗∥ < ρ (9)

and
∥xk+1 − x∗∥ ≤ ψ2(∥xk − x∗∥)∥xk − x∗∥ ≤ ∥xk − x∗∥, (10)

where functions ψ1 and ψ2 are defined previously. Furthermore, the limit point x∗ is the only
solution of equation F (x) = 0 in Ω1 = Ω ∩ Ū(x∗, ρ).

Proof. We shall show that sequence {xn} is well defined in U(x∗, ρ) and converges to x∗ so
that estimates (9) and (10) hold. Let x ∈ U(x∗, ρ). Using the definition of ρ and (c3) we have
that

∥F ′(x∗)−1(F ′(x)− F ′(x∗))∥ ≤ φ0(∥x− x∗∥) ≤ φ0(ρ0) ≤ φ0(ρ) < 1. (11)

It follows from (11) and the Banach perturbation lemma [2] that F ′(x)−1 ∈ L(B2,B1) and

∥F ′(x)−1F ′(x∗)∥ ≤ 1

1− φ0(∥x− x∗∥)
. (12)

In particular, estimate (12) hold for x = x0, since x0 ∈ U(x∗, ρ) − {x∗}. We can write by the
first substep of method (2) for k = 0 and (c3)

z0 − x∗ = x0 − x∗ − F ′(x0)
−1F (x0)

= [F ′(x0)
−1F ′(x∗)]

×[

1∫
0

F ′(x∗)−1F ′(x∗ + θ(x0 − x∗))− F ′(x0)](x0 − x∗)dθ].

(13)
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By (c4), (5), (12), (13) and the definition of ρ, we get in turn that

∥z0 − x∗∥ ≤ ∥F ′(x0)
−1F ′(x∗)∥

×∥
1∫

0

F ′(x∗)−1[F ′(x∗ + θ(x0 − x∗))− F ′(x0)](x0 − x∗)dθ∥

≤

1∫
0

φ((1− θ)∥x0 − x∗∥)dθ∥x0 − x∗∥

1− φ0(∥x0 − x∗∥)
≤ ψ1(∥x0 − x∗∥)∥x0 − x∗∥ ≤ ∥x0 − x∗∥ < ρ, (14)

which shows (9) for k = 0 and z1 ∈ U(x∗, ρ). We shall show that x1 is well defined by proving
the invertability of F [z0, x0]. Indeed, using (4), (6), (c4) and (14), we obtain in turn that

∥F ′(x∗)−1([F [z0, x0]− F ′(x∗))∥ ≤ φ1(∥z0 − x∗∥, ∥x0 − x∗∥)
≤ φ1(ψ1(∥x0 − x∗∥)∥x0 − x∗∥, ∥x0 − x∗∥)
≤ φ1(ψ1(ρ)ρ, ρ) < 1, (15)

so F [z0, x0]
−1 ∈ L(B2,B1) and

∥F [z0, x0]−1F ′(x∗)∥ ≤ 1

1− φ1(ψ1(∥x0 − x∗∥)∥x0 − x∗∥, ∥x0 − x∗∥)
. (16)

By (c3) and (c5), we get the estimates

∥F ′(x∗)−1F ′(x0)∥ ≤ φ2(∥x0 − x∗∥) (17)

and

(18)

∥F ′(x∗)−1F (z0)∥
= ∥F ′(x∗)−1(F (z0)− F (x∗))∥

= ∥
1∫

0

F ′(x∗)−1F ′(x∗ + θ(z0 − x∗))(z0 − x∗)dθ∥

≤ φ3(∥z0 − x∗∥)∥z0 − x∗∥
≤ φ3(ψ1(∥x0 − x∗∥)∥x0 − x∗∥)ψ1(∥x0 − x∗∥)∥x0 − x∗∥. (19)

Then, we get by the second substep of method (2), (7), (15)–(19) that

∥x1 − x∗∥ ≤ ∥z0 − x∗∥+ ∥F [z0, x0]−1F ′(x∗)∥2

×∥F ′(x∗)−1F ′(x0)∥∥F ′(x∗)−1F (z0)∥
≤ ψ1(∥x0 − x∗∥)∥x0 − x∗∥

+
φ2(∥x0 − x∗∥)φ3(∥z0 − x∗∥)∥z0 − x∗∥

(1− φ1(ψ1(∥x0 − x∗∥)∥x0x−∗ ∥, ∥x0 − x∗∥))2
≤ ψ2(∥x0 − x∗∥)∥x0 − x∗∥ ≤ ∥x0 − x∗∥ < ρ, (20)

which shows (10) for n = 0 and x1 ∈ U(x∗, ρ). The induction for (9) and (10) is completed in
an analogous way, if we replace x0, z0, x1 by xm, zm, xm+1 in the preceding estimates. Then, by
the estimate

∥xm+1 − x∗∥ ≤ c∥xm − x∗∥ < ρ, (21)

where c = ψ2(∥x0 − x∗∥) ∈ [0, 1), we deduce that limm−→+∞ xm = x∗ and xm+1 ∈ U(x∗, ρ).
Then, for the uniqueness part, we let y∗ ∈ Ω1 such that F (y∗) = 0. Define linear operator
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Q =
1∫
0

F ′(x∗ + θ(y∗ − x∗))dθ. Using (c3) and (8) we get in turn that

∥F ′(x∗)−1(Q− F ′(x∗))∥ ≤
1∫

0

φ0(θ∥y∗ − x∗∥)dθ ≤ φ0(ρ̄) < 1, (22)

so Q−1 ∈ L(B2,B1). We can write that

0 = F (y∗)− F (x∗) = Q(y∗ − x∗), (23)

so x∗ = y∗.
�

3. Numerical examples

In this Section the divided difference is given by F [x, y] =
1∫
0

F ′(y + θ(x− y))dθ.

Example 1. Returning back to the example in the introduction, we have for φ0(t) = φ(t) =
147t, φ1(s, t) =

147
2 (s+ t), φ2(t) = φ3(t) = 2. Using the definition of ρ we obtain

ρ = 0.0011.

Example 2. Let X = Y = R3,Ω = Ū(0, 1), x∗ = (0, 0, 0)T . Define function F on Ω for
w = (x, y, z)T by

F (w) = (ex − 1,
e− 1

2
y2 + y, z)T .

The Fréchet-derivative is defined by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Then, we have φ0(t) = (e − 1)t, φ(t) = e

1
e−1 t, φ1(s, t) = 1

e−1(s + t), φ2(t) = φ3(t) = e
1

e−1 .
Using the definition of ρ we obtain

ρ = 0.1825

Example 3. Let X = Y = C[0, 1], be the space of continuous functions on [0, 1]) equipped
with the max-norm. Let Ω = Ū(0, 1). Define F on Ω by

F (φ)(x) = φ(x)− 10

1∫
0

xθφ(θ)3dθ.

We have that

[F ′(φ(ξ))](x) = ξ(x)− 30

1∫
0

xθφ(θ)2dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, φ0(t) = 15t, φ(t) = 30t, φ1(s, t) =
15
2 (s+ t), φ2(t) = φ3(t) = 30. We

obtain

ρ = 7.3910e− 05.
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4. Conclusion

The Kung-Traub method has been used to solve nonlinear equations on the real line. The
convergence order is shown to be four under the assumption that the fifth order derivative (not
on the method) exists limiting its applicability. But we have extended the applicability of the
method in a Banach space setting using hypotheses only on the derivative and divided difference
of order one that actually appear in the method.
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